
MBrace: Cloud Computing with Monads

Jan Dzik Nick Palladinos Konstantinos Rontogiannis Eirik Tsarpalis Nikolaos Vathis
Nessos Information Technologies, SA

{jdzik,npal,krontogiannis,eirik,nvathis}@nessos.gr

Abstract
As cloud computing and big data gain prominence in today’s eco-
nomic landscape, the challenge of effectively articulating complex
algorithms in distributed environments becomes ever more impor-
tant. In this paper we describe MBrace; a novel programming mod-
el/framework for performing large scale computation in the cloud.
Based on the .NET software stack, it utilizes the power of the F#
programming language. MBrace introduces a declarative style for
specifying and composing parallelism patterns, in what is known
as cloud workflows or a cloud monad. MBrace is also a distributed
execution runtime that handles orchestration of cloud workflows in
the data centre.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Distributed Programming

Keywords cloud monad, distributed programming, big data

1. Introduction
We live in the era of big data and cloud computing. Massive vol-
umes of unstructured data are constantly collected and stored in
huge data centres around the world. Data scientists and computer
engineers face the formidable task of managing and analysing huge
volumes of data in a massively distributed setting, where thousands
of machines spend hours or even days executing highly sophisti-
cated algorithms. Programming large-scale distributed systems is a
notoriously difficult task that requires expert programmers orches-
trating concurrent processes in a setting where hardware/software
failures are incessantly commonplace. The key to success in such
scenaria is choosing a distribution framework that provides the cor-
rect programming abstractions and automates handling of scalabil-
ity and fault tolerance.

Several programming models have been proposed and many
interesting implementations are currently under development: the
most widespread paradigm is undoubtedly MapReduce, introduced
by Google [1] and currently enjoying success in open source im-
plementations such as Hadoop; frameworks such as Akka [2] of-
fer distribution through the actor abstraction; finally, new program-
ming models like CloudHaskell [3] and HdpH [4] have recently
been proposed by the Haskell community (see section 6).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLOS’13, November 03 - 06, 2013, Farmington, PA, USA.
Copyright © 2013 ACM 978-1-4503-2460-1/13/11. . . $15.00.
http://dx.doi.org/10.1145/2525528.2525531

One of the main criticisms of the MapReduce model and
Hadoop in particular, is its reliance on batch processing and linear
pipelining of jobs for certain types of execution patterns: streaming
[5], iterative [6] and incremental [7] algorithms all require pro-
gramming models strictly more expressive than MapReduce.

MBrace introduces a novel programming model and execution
framework for the cloud that offers a compositional and declarative
approach to describing distributed computations. This is achieved
with the help of F#’s computation expressions that enable fluent,
language-integrated cloud workflows, in a model also known as a
monad. Concurrency patterns and overall execution semantics are
specified with the help of primitive combinators that operate on
such workflows.

cloud {
let job1 = cloud { return 1 }
let job2 = cloud { return 2 }
let! [| result1 ; result2 |] =
Cloud.Parallel [| job1 ; job2 |]

return result1 + result2
}

The above F# snippet defines two small cloud workflows, job1 and
job2 which are then passed to the Cloud.Parallel combinator.
This declares that the jobs are to be executed in a distributed
fork/join pattern. The workflow further specifies that once both jobs
have completed, the parent workflow will resume its computation
and return the final result.

Cloud workflows denote deferred computation; their execution
can only be performed within the context of a distributed environ-
ment, such as the runtime that the MBrace framework provides.
The MBrace runtime is a scalable cluster infrastructure that enables
distributed abstract machine execution for cloud workflows. The
runtime interprets monadic structure of workflows using a sched-
uler/worker hierarchy, transparently allocating computational re-
sources to pending cloud jobs.

For instance, in the cloud workflow declared above, the forked
jobs will be scheduled in two separate worker machines transpar-
ently designated by the runtime. Once both have completed, com-
putation will resume in another allocated worker, potentially not the
same as the one where the forking was originally initiated. What
this means is that cloud workflows are executed in a non-blocking
manner, in which computation state is liberally suspended, trans-
ferred and resumed from one machine to another.

The programming model and runtime form the basic compo-
nents of a wider cloud computing solution provided by MBrace,
which also features rich client tooling, cloud workflow libraries, an
interactive shell (REPL) and IDE integration [8].

In this paper we present features of the MBrace programming
model that involve two fundamental concepts: distributed compu-
tation and distributed data. In section 2 we present the abstrac-
tions and combinators that actuate distributed computation com-
pleted with examples and an informal description of semantics. We
continue with distributed data (section 3), explaining the use and



management of distributed data entities. In section 4 we present an
overview of the MBrace runtime. Section 5 offers performance and
scalability benchmarks on the MBrace framework compared with
Hadoop. In section 6, we give a brief overview of related work and
finally, in section 7, we discuss conclusions and future work.

2. Cloud Workflows
Cloud workflows form the essential pillar of MBrace; the program-
ming model they introduce provides the ability to declare abstract
and modal expressions in a fluent, integrated manner, to be subse-
quently executed in the cloud.

Cloud workflows are made possible thanks to a design pattern
known as the monad. In short, monads are a language feature that
allow the definition of language-integrated DSLs in a way where
semantic peculiarities are abstracted away from the syntactic inter-
face. Monads have known success in languages such as Haskell,
Scala and Clojure.

In F#, monads are manifested in a feature called Computation
Expressions [9], which offer a range of overloadable language pat-
terns such as list comprehensions, queries, exception handling and
even constructs traditionally associated with imperative program-
ming, such as for and while loops. What makes computation ex-
pressions interesting is the fact that instances can be declared in
library code, overloading language constructs without the need to
tweak the F# compiler [10].

2.1 A Prelude: F# Async Workflows
A characteristic example of computation expressions in F# are
Asynchronous Workflows used for asynchronous programming. In
.NET and other frameworks this has traditionally been associated
with callback programming [11], known to result in complex and
hard-to-read code. Asynchronous workflows avoid the need of ex-
plicit callbacks, giving the illusion of sequential programming [12].

let download (url : Uri) = async {
let http = new System.Net.WebClient()
let! html = http.AsyncDownloadString(url)
return html.Split('\n')

}

The above workflow asynchronously downloads the content of a
web page and resumes to split it into lines once the download has
been completed. Async operations are composed with the special
let! keyword, which can be thought of as syntactic sugar for
the callback being passed to the right-hand-side operation. The
return keyword denotes that the workflow should conclude with
the right hand side value. As a sidenote, the two keywords are F#
syntactic sugar for the monadic bind and monadic unit operations,
respectively.

F# async workflows can be used to actuate thread parallelism.
The combinator

Async.Parallel : seq<Async<’T>> -> Async<’T []>

where Async<’T> is the type signature of an async workflow
computing a value of type ’T, combines a given enumeration of
workflows into a single asynchronous workflow that executes the
given inputs in parallel, following a fork-join pattern:

let workflow = async {
let! results =
Async.Parallel
[
download "http://www.m-brace.net";
download "http://www.nessos.gr"

]

return Seq.concat results |> Seq.length
}

This snippet will download the two pages asynchronously and will
resume computation as soon as both operations have completed.

Async expressions have deferred execution semantics: they
need to be evaluated by a scheduler that transparently allocates
pending jobs to the underlying .NET thread pool. A typical execut-
ing async expression will make jumps between multiple threads
as it progresses.

The programming model introduced in F# asynchronous work-
flows has been successful enough that it has been adopted by other
languages such as C# 5.0, Python and Haskell.

2.2 The Cloud Workflow Programming Model
The programming model of MBrace follows very much in the style
of F# asynchronous workflows. MBrace introduces cloud work-
flows as a means of specifying distributed computation. A cloud
workflow has type Cloud<’T>, which represents a deferred cloud
computation that returns a result of type ’T once executed. Build-
ing on our previous declaration of the download async workflow,
we could define

let lineCount() =
cloud {
let jobs : Cloud<string []> [] =
Array.map (Cloud.OfAsync << download)
[| "http://www.m-brace.net" ;
"http://www.nessos.gr" |]

let! results = Cloud.Parallel jobs
return Array.concat results |> Array.length

}

This is a direct adaptation of the previous async snippet. The
main differences between this and async are the cloud{} keyword
that delimits workflows and the Cloud.Parallel combinator that
actuates parallelism. Its type signature is

Cloud.Parallel : Cloud<’T> [] -> Cloud<’T []>

This takes an array of cloud computations and returns a workflow
that executes them in parallel, returning an array of all the results.
The parallel jobs are allocated to worker machines in the data
centre, just as async jobs are scheduled to threads in the thread
pool. The parent computation will resume as soon as all of the child
computations have completed. Like async, cloud workflows have
deferred execution semantics and have to be sent to an MBrace
runtime for evaluation.

Cloud workflows can be used to create user defined higher-order
functions. For example, we can define a distributed variant of the
classic filter combinator:

let filter (f : 'T -> bool) (xs : 'T []) =
cloud {
// a nested subexpression that performs
// the checking on a single element
let pick (x : 'T) =
cloud {
if f x then return Some x
else return None

}

let! results =
Cloud.Parallel <| Array.map pick xs

return Array.choose id results
}

Cloud workflows support a multiplicity of overloaded language
constructs, including operations such as for and while loops.

cloud {
for i in [| 1 .. 100 |] do
let! _ = cloud { return i }



in return ()
}

Even though these are sequential operations, the fact that they com-
pose with arbitrary cloud workflows make them powerful tools in
scenaria where distributed, iterative algorithms are required. The
cloud workflow model also permits higher-order, recursive decla-
rations and is expressive enough to enable complex computation
patterns such as the Ackermann function.

An important feature offered by cloud workflows is exception
handling. Exceptions can be raised and caught in cloud workflows
just like any other piece of F# or .NET code. However, the dis-
tributed nature of cloud workflows makes this version of excep-
tion handling particularly interesting: in MBrace, the symbolic ex-
ecution stack winds across multiple machines. Thus as exceptions
are raised, the computation stack is un-winded across multiple ma-
chines as well.

This is a good demonstration of what we feel is one of the
biggest strengths of MBrace. Error handling in particular and com-
putation state in general have a global and hierarchical scope rather
than one that is fragmented and localised. This is achieved thanks
to symbolic, distributed interpretation of what is known as the free
continuation monad [13, 14], or what we like to call the “monadic
skeleton” of a cloud workflow.

Example: Defining MapReduce
MapReduce is a programming model that streamlines large scale
distributed computation on big data sets. Introduced by Google in
2003, it has known immense success in open source implementa-
tions, such as Hadoop. MapReduce is a higher-order distributed al-
gorithm that takes two functions, map and reduce as its inputs. The
map function performs some computation on initial input, while the
reduce function takes two outputs from map and combines them
into a single result. When passed to MapReduce, a distributed pro-
gram is defined that performs the combined mappings and reduc-
tions on a given list of initial inputs.

Unlike other big data frameworks, where MapReduce comes
as the distribution primitive, MBrace makes it possible to define
MapReduce-like workflows at the library level. A simplistic variant
could be declared as follows:

let rec mapReduce (map: 'T -> Cloud<'R>)
(reduce: 'R -> 'R -> Cloud<'R>)
(identity: 'R)
(input: 'T list) =

cloud {
match input with
| [] -> return identity
| [value] -> return! map value
| _ ->
let left, right = List.split input

let! r1, r2 =
(mapReduce map reduce identity left)

<||>
(mapReduce map reduce identity right)

return! reduce r1 r2
}

This splits the list of inputs in half and passes them recursively into
the workflow using the binary parallel operator,

<||> : Cloud<’T> -> Cloud<’U> -> Cloud<’T * ’U>

Once inputs are reduced to trivial components, the map function
is applied and forked jobs are gradually joined using the reduce
function.

Nondeterministic Computation
In addition to Cloud.Parallel, MBrace offers the distribution
primitive

Cloud.Choice : Cloud<’T option> [] -> Cloud<’T option>

that combines a collection of nondeterministic computations into
one. A computation that returns optionals is nondeterministic in the
sense that it may either succeed by returning Some value of type ’T
or fail yielding None. What the Choice combinator does is exe-
cute input workflows in parallel, returning a result as soon as the
first child computation completes successfully (with Some result),
actively cancelling all other pending children. The combinator re-
turns None if every child completed without success.

The Choice combinator is particularly suited for distributing
decision problems, such as SAT solvers or large number factorisa-
tion. As an example, we give the implementation of a distributed
existential combinator:

let exists (f : 'T -> Cloud<bool>) (inputs : 'T []) =
cloud {
let pick (x : 'T) =
cloud {
let! result = f x
return
if result then Some x
else None

}

let! result =
Cloud.Choice <| Array.map pick inputs

return result.IsSome
} : Cloud<bool>

Local Parallelism
There are cases where constraining the execution of a cloud work-
flow in the context of a single worker node might be extremely
useful. This can be performed using the

Cloud.ToLocal : Cloud<’T> -> Cloud<’T>

primitive, or its local abbreviation. The combinator transforms
any given cloud workflow into an equivalent expression that ex-
ecutes in a strictly local context, forcing concurrency semantics
largely similar to those of async but with the additional capabil-
ities that can be enabled by running on a cloud runtime.

The local primitive is particularly handy when it comes to ef-
fectively managing computation granularity. As an example, we
can implement a simple Fibonacci function, with a fallback mech-
anism to local parallelism.

let rec fib n depth =
cloud {
if depth = 0 then
return! Cloud.ToLocal <| fib n depth

else
match n with
| 1 | 2 -> return 1
| n ->
let! (left, right) =
fib (n - 1) (depth - 1)
<||>

fib (n - 2) (depth - 1)
return left + right

}

3. Distributed Data
Cloud workflows offer a programming model for distributed com-
putation. But what happens when it comes to big data? While the



distributable execution environments of MBrace do offer a limited
form of data distribution, their scope is inherently local and almost
certainly do not scale to the demands of modern big data applica-
tions. MBrace offers a plethora of mechanisms for managing data
in a more global and massive scale. These provide an essential de-
coupling between distributed computation and distributed data.

Cloud Refs
The MBrace programming model offers access to persistable and
distributed data entities known as cloud refs. Cloud refs very much
resemble references found in the ML family of languages but are
“monadic” in nature. In other words, their introduction entails a
scheduling decision by the runtime. The following workflow stores
the downloaded content of a web page and returns a cloud ref to it:

let getRef () : Cloud<CloudRef<string []>> =
cloud {
let! html = download "http://www.m-brace.net"
let! ref = CloudRef.New html
return ref

}

When run, this will return a unique identifier that can be subse-
quently dereferenced either in the context of the client or in a future
cloud computation:

// compute a cloud ref
let r = runtime.Run <@ getRef () @>
// dereference locally
let data : string [] = r.Value

Values of cloud refs are kept in a global storage provider that plugs
into the MBrace runtime. MBrace transparently manages storage,
while it also aggressively caches local copies to select worker
nodes. Scheduling decisions are taken with respect to caching affin-
ity, resulting in minimized data transfer.

Cloud refs are immutable by design, they can either be initial-
ized or dereferenced. Immutability eliminates synchronization is-
sues, resulting in efficient caching and enhanced access speeds.

An interesting aspect of cloud refs is the ability to define large,
distributed data structures. For example, one could define a dis-
tributed binary tree like so:

type DistribTree<'T> =
| Leaf
| Branch of 'T * CloudRef<DistribTree<'T>> *

CloudRef<DistribTree<'T>>

// initialize a simple distributed tree
let rec populate (depth : int) =
cloud {
if depth = 0 then
return! CloudRef.New Leaf

else
let! l,r = populate (depth - 1) <||>

populate (depth - 1)

return! CloudRef.New <| Branch(depth, l, r)
} : Cloud<CloudRef<DistribTree<int>>>

MBrace also offers a mutable variant of the CloudRef, called
appropriately MutableCloudRef. These permit conditional up-
dates, which makes them a powerful primitive capable of defin-
ing synchronisation mechanisms such as distributed locks and
semaphores. This comes with a performance trade-off, since muta-
ble cloud refs are not cached.

Miscellaneous Data Primitives
The MBrace framework comes with a few additional distributed
data primitives:

• Cloud sequences allow the storage of immutable collections of
values that can be dereferenced in a lazy, on-demand manner.

• Cloud files enable the storage of immutable binary blobs.

Distributed Resource Management
The constructs mentioned previously manifest themselves by allo-
cating space in the storage back end of the runtime. They thus oc-
cupy resources associated with the global distribution context and
are not garbage collectable by individual workers in the cluster.
Such “globally scoped” items give rise to the need for distributed
deallocation facilities.

The MBrace programming model offers a mechanism for per-
forming such deallocations as well as a syntactic facility for scoped
resource management. All of the aforementioned data constructs
implement the CloudDisposable interface. This can be thought
of as a distributed version of the IDisposable interface available
in .NET. Similarities do not stop there; just as .NET languages offer
the using keyword [15] that allows for scoped introduction of dis-
posable resources, MBrace workflows come with the use and use!
keywords that apply to CloudDisposable entities. For instance,

cloud {
use! cref = CloudRef.New [| 1 .. 100000000 |]
try
if cref.Value.Length > 1000 then
return failwith "error"

with e ->
do! Cloud.Logf "error in cloudRef %O" cref
return raise e

}

Initializing a cloud ref with the use keyword provides the assurance
that it will be deallocated from the global store as soon as the
workflow has exited its scope. In conformance to the standard
using semantics of .NET languages, this will occur regardless of
whether the computation has completed normally or exited with an
exception.

4. The MBrace Runtime
The MBrace framework includes a distributed runtime capable of
executing cloud workflows: the MBrace runtime is an elastic, fault
tolerant and multitasking cluster infrastructure and execution en-
gine that includes facilities for managing, monitoring and debug-
ging cloud processes, much in the sense of a distributed operating
system.

The MBrace execution model follows a scheduler/worker hier-
archy: when a cloud workflow is uploaded to the runtime for execu-
tion, a scheduler instance is initialized that interprets the monadic
structure of the workflow, disseminating continuations to worker
nodes as required. Scheduling is load balanced, taking into account
CPU and network statistics for each available worker. It is also
fault-tolerant, rescheduling any job in the event of a worker being
lost.

The MBrace runtime is capable of executing multiple cloud pro-
cesses concurrently. Cloud processes can be monitored, debugged
and cancelled on demand. The runtime enforces a policy of isola-
tion in which every cloud process is run at dedicated CLR instances
in each worker node: this ensures better resource management and
improves overall stability.

It should be noted that the MBrace runtime requires an in-
dependent storage service to function. This is used for record-
ing distributed data primitives as well as internal optimizations.
MBrace comes out of the box with implementations for FileSys-
tem, SQL and Azure storage providers, while providing pluggable,
user-defined implementations is also possible. We plan to include
support for other storage services in the future, such as Hadoop’s



HDFS or Amazon’s S3. A more ambitious direction is implement-
ing an in-house storage service that utilizes storage space from the
MBrace cluster itself.

The MBrace runtime is currently deployable in Windows-only
machines and has been successfully tested in private data centres
as well as Windows Azure. Effort is being made to port MBrace to
Mono [16] and Linux.

5. Performance
In this section we discuss performance and scalability of the
MBrace framework and how it compares to the fairly established
Apache Hadoop framework. Both frameworks were tested while
running on clusters powered by Windows Azure. The Hadoop clus-
ters consisted of 4, 8, 16 and 32 data nodes with one head node. The
data nodes were A3-Large instances (4 virtual cores, 7GB RAM)
and the head node was an A4 Extra-Large instance (8 virtual cores,
14GB RAM). The MBrace clusters consisted of 4, 8, 16 and 32 A3-
Large instances used as workers and one A3-Large instance used as
a scheduler. We present two benchmarks produced using a couple
of fairly common distributed algorithms, grep and k-means1.

As a first test, we implemented the distributed grep algorithm
over MapReduce in both MBrace and Hadoop. The distributed grep
algorithm reads a collection of files and returns the number of lines
that match a given pattern. This is a fairly IO-based algorithm that is
not very computation-intensive. The input set has a size of 32, 64,
128 and 256 GB depending on the cluster size. The results show
that MBrace slightly outperforms Hadoop (see figure 1).

We also implemented the k-means algorithm: k-means is an it-
erative algorithm used for partitioning a set of vectors into a fixed
number of clusters, so that a centroid distance minimization con-
dition is satisfied. k-means is an important tool in fields like sig-
nal processing and machine learning. However, it is also the pro-
totypical example of an algorithm not directly expressible using
the MapReduce model. The problem can be remedied by schedul-
ing sequences of distinct MapReduce jobs, but that could result in
performance loss. This is not the case with MBrace, which is not
bound by the constraints of the MapReduce model.

We compared the performance of the k-means algorithm found
in the Apache Mahout library [17] with our own MBrace imple-
mentation. The input was one million, randomly generated, 100-
dimensional points, the number of clusters was set to k = 6 and
the number of iterations was 10. The cluster configuration remains
the same as in the grep test. The results show that MBrace signifi-
cantly surpasses Mahout, with performance improvement reaching
one order of magnitude (see figure 2).

6. Related Work
Many interesting and expressive frameworks come from the Haskell
community and are based on the idea that strong types and mon-
ads can offer a composable model for programming with effects.
CloudHaskell[3] and HdpH[4] are two new approaches based on
monads for composing distributed computations but with slightly
different approaches. CloudHaskell is based on a Process monad
which provides a message passing communication model, inspired
by Erlang, and a novel technique for serialising closures. The Pro-
cess monad is used as a shallow DSL embedding for the channel
oriented communication layer and is intended as a low-level layer
for building larger abstractions. HdpH is influenced by the Par
monad[18] and the work on closure serialisation found in Cloud-
Haskell. It provides a high-level semi-explicit parallelism via the
use of a distributed generalisation of the Par monad. One interest-

1 All benchmark related source code can be freely referenced at
https://github.com/nessos/MBrace-Benchmarks-PLOS2013.

Figure 1. Distributed grep performance on Windows Azure

20 40 60 80 100 120
300

320

340

360

# worker cores

Ti
m

e
(s

ec
)

MBrace
Hadoop

Figure 2. k-means performance on Windows Azure

20 40 60 80 100 120

0

500

1,000

1,500

# worker cores

Ti
m

e
(s

ec
)

MBrace
Hadoop

ing design decision is the use of global references for communica-
tion purposes and data sharing.

7. Conclusions
MBrace is a distributed programming model and framework based
on the .NET software stack. The programming model of MBrace
is founded on F#’s computation expressions. Parallelism patterns
are introduced using primitive combinators that act on cloud work-
flows. Cloud workflows are executed by a scheduler running on the
MBrace runtime, which transparently allocates cluster resources
and ensures fault tolerance.

The MBrace framework includes an execution runtime as well
as client tooling for on-the-fly deployment and debugging of dis-
tributed code. The framework is currently in its alpha testing stage,
however early benchmarks show that it matches, in some cases
greatly surpassing Hadoop in performance.

MBrace is a work in progress with many challenges ahead.
Among other things, we are currently engaged with providing an
embedded DSL for data parallelism in F# and C#, in the form of
a LINQ [19] provider. We also plan to offer support for the Mono
framework [16], which would open up MBrace to the Linux world.

References
[1] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data

processing on large clusters. In Proceedings of the 6th conference on

https://github.com/nessos/MBrace-Benchmarks-PLOS2013


Symposium on Operating Systems Design & Implementation - Volume
6, OSDI’04, pages 10–10, 2004.

[2] Akka Framework. URL http://www.akka.io/.
[3] Jeff Epstein, Andrew P. Black, and Simon Peyton-Jones. Towards

Haskell in the cloud. SIGPLAN Not., 46(12):118–129, September
2011. ISSN 0362-1340.

[4] Patrick Maier and Phil Trinder. Implementing a high-level distributed-
memory parallel Haskell in Haskell. In Proceedings of the 23rd inter-
national conference on Implementation and Application of Functional
Languages, IFL’11, pages 35–50, 2012. ISBN 978-3-642-34406-0.

[5] Longbin Lai, Jingyu Zhou, Long Zheng, Huakang Li, Yanchao Lu,
Feilong Tang, and Minyi Guo. ShmStreaming: A Shared Memory Ap-
proach for Improving Hadoop Streaming Performance. In 2013 IEEE
27th International Conference on Advanced Information Networking
and Applications (AINA), pages 137–144, 2013. .

[6] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst.
HaLoop: Efficient Iterative Data Processing on Large Clusters. Proc.
VLDB Endow., 3(1-2):285–296, September 2010. ISSN 2150-8097.

[7] Cairong Yan, Xin Yang, Ze Yu, Min Li, and Xiaolin Li. IncMR: Incre-
mental Data Processing Based on MapReduce. In Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference on, pages 534–
541, 2012.

[8] MBrace website. URL http://www.m-brace.net/.
[9] Microsoft MSDN, Computation Expressions (F#), . URL http:
//msdn.microsoft.com/en-us/library/dd233182.aspx.

[10] Tomas Petricek and Don Syme. Syntax Matters: Writing abstract
computations in F#. Pre-proceedings of TFP (Trends in Functional
Programming), St. Andrews, Scotland, 2012.

[11] Microsoft MSDN, Asynchronous Programming Model, . URL http:
//msdn.microsoft.com/en-us/library/ms228963.aspx.

[12] Don Syme, Tomas Petricek, and Dmitry Lomov. The F# Asyn-
chronous Programming Model. In Practical Aspects of Declarative
Languages, volume 6539 of Lecture Notes in Computer Science. 2011.
ISBN 978-3-642-18377-5.

[13] Wouter Swierstra. Data types à la carte. Journal of Functional
Programming, 18:423–436, 7 2008. ISSN 1469-7653.

[14] R.O. Bjarnarson. Stackless Scala With Free Monads. Scala Days 2012.
URL http://blog.higher-order.com/assets/trampolines.
pdf.

[15] Microsoft MSDN, using Statement (C# Reference), . URL http:
//msdn.microsoft.com/en-us/library/yh598w02.aspx.

[16] Mono Project. URL http://www.mono-project.com/.
[17] Apache Mahout. URL http://mahout.apache.org/.
[18] Simon Marlow, Ryan Newton, and Simon Peyton Jones. A Monad for

Deterministic Parallelism. In Proceedings of the 4th ACM symposium
on Haskell, Haskell ’11, pages 71–82, 2011. ISBN 978-1-4503-0860-
1.

[19] Microsoft MSDN, LINQ (Language-Integrated Query). URL
http://msdn.microsoft.com/en-us/library/vstudio/
bb397926.aspx.

http://www.akka.io/
http://www.m-brace.net/
http://msdn.microsoft.com/en-us/library/dd233182.aspx
http://msdn.microsoft.com/en-us/library/dd233182.aspx
http://msdn.microsoft.com/en-us/library/ms228963.aspx
http://msdn.microsoft.com/en-us/library/ms228963.aspx
http://blog.higher-order.com/assets/trampolines.pdf
http://blog.higher-order.com/assets/trampolines.pdf
http://msdn.microsoft.com/en-us/library/yh598w02.aspx
http://msdn.microsoft.com/en-us/library/yh598w02.aspx
http://www.mono-project.com/
http://mahout.apache.org/
http://msdn.microsoft.com/en-us/library/vstudio/bb397926.aspx
http://msdn.microsoft.com/en-us/library/vstudio/bb397926.aspx

	Introduction
	Cloud Workflows
	A Prelude: F# Async Workflows
	The Cloud Workflow Programming Model

	Distributed Data
	The MBrace Runtime
	Performance
	Related Work
	Conclusions

